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Humans can represent number either exactly – using their knowledge of exact numbers as
supported by language, or approximately – using their approximate number system (ANS).
Adults can map between these two systems – they can both translate from an approximate
sense of the number of items in a brief visual display to a discrete number word estimate
(i.e., ANS-to-Word), and can generate an approximation, for example by rapidly tapping,
when provided with an exact verbal number (i.e., Word-to-ANS). Here we ask how these
mappings are initially formed and whether one mapping direction may become functional
before the other during development. In two experiments, we gave 2–5 year old children
both an ANS-to-Word task, where they had to give a verbal number response to an approx-
imate presentation (i.e., after seeing rapidly flashed dots, or watching rapid hand taps), and
a Word-to-ANS task, where they had to generate an approximate response to a verbal num-
ber request (i.e., rapidly tapping after hearing a number word). Replicating previous
results, children did not successfully generate numerically appropriate verbal responses
in the ANS-to-Word task until after 4 years of age – well after they had acquired the Car-
dinality Principle of verbal counting. In contrast, children successfully generated
numerically appropriate tapping sequences in the Word-to-ANS task before 4 years of
age – well before many understood the Cardinality Principle. We further found that the
accuracy of the mapping between the ANS and number words, as captured by error rates,
continues to develop after this initial formation of the interface. These results suggest that
the mapping between the ANS and verbal number representations is not functionally bidi-
rectional in early development, and that the mapping direction from number representa-
tions to the ANS is established before the reverse.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

While children and preverbal infants of all cultures have
an intuitive sense of approximate number (for review, see
Dehaene, 2009), acquiring an exact verbal count list (e.g.,
‘‘one, two, three. . .’’) that appropriately represents exact
cardinalities is a difficult feat that takes children several
years to master (Fuson, 1987; Gelman & Gallistel, 1978; Le
Corre & Carey, 2007; Wynn, 1992). By adulthood, speakers
of languages that have exact number words can translate
nearly effortlessly between these two formats, with brief
presentations of number symbols (e.g., ‘‘7’’) or words (e.g.,
‘‘seven’’) being sufficient to activate a corresponding
approximate number system (ANS) representation (Ansari,
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2007; Ebersbach & Erz, 2014; Moyer & Landauer, 1967;
Pinel, Piazza, Le Bihan, & Dehaene, 2004) and a briefly
shown display of dots being sufficient to activate a corre-
sponding number word (Crollen, Castronovo, & Seron,
2011; Ebersbach & Erz, 2014; Izard & Dehaene, 2008;
Krueger, 1972). However, before children understand the
number words, an interface between number words and
the ANS is not possible. How this interface first develops
has not yet been determined.

Children’s learning of number words is surprisingly
slow, and follows a stereotyped progression. Around age
2, children first learn to recite the counting words in order
(i.e., ‘‘one–two–three. . .’’), but they attach no specific
numerical meaning to them (cp. reciting the ABCs or other
memorized songs). Then, around 2:6 (years:months), chil-
dren come to understand what the word ‘‘one’’ means (Le
Corre & Carey, 2007; Wynn, 1992). Children can demon-
strate this knowledge in multiple ways – e.g., when asked
to count a set with only one item children will correctly
report that the set contains one item, and when asked to
give someone one item children will correctly give only
one item (Le Corre, Van de Walle, Brannon, & Carey,
2006; Sarnecka & Carey, 2008). However, during this stage
all other number words in the count list remain semanti-
cally undifferentiated – e.g., when asked to give two, three
or more items a ‘‘One-Knower’’ will grab a random handful
of items, apparently failing to differentiate between larger
and smaller number words (Le Corre et al., 2006; Wynn,
1992).

Over the following 6- to 12-months, each child pro-
gresses through stages of being a ‘‘Two-Knower’’ (i.e.,
understanding ‘‘one’’ and ‘‘two’’ but not differentiating
‘‘three, four, five’’, etc.), a ‘‘Three-Knower’’ and perhaps a
‘‘Four-Knower’’ before emerging as a child who under-
stands the Cardinality Principle – i.e., understanding that
the last number produced when counting a set indicates
the cardinality of the set (Gelman & Gallistel, 1978; Le
Corre et al., 2006; Wynn, 1992). Children who only under-
stand some subset of the number words, and not the Car-
dinality Principle, have been called ‘‘Subset-Knowers’’,
while children who have fully grasped the Cardinality Prin-
ciple are called ‘‘CP-Knowers’’ (Cardinality Principle know-
ers). Importantly, throughout this entire sequence of
developmental changes in numerical understanding,
which lasts more than a year, Subset-Knowers will often
perfectly enumerate sets containing 10 or more items
using one-to-one correspondence by serially pointing to
each item and counting, ‘‘one, two, three. . .’’ and they will
correctly use the counting words in order and not double
count items (Gelman & Gallistel, 1978; Le Corre & Carey,
2007). This striking contrast between children’s robust ver-
bal counting behavior and their still emerging conceptual
understanding of cardinality is a puzzle: what understand-
ing do these children have for the number words they pro-
duce when counting collections of items?

In addressing this question, a recent tension has
emerged in the literature, highlighted by two influential
papers. On the one hand, Le Corre and Carey (2007) had
children look at a brief display of dots and guess their num-
ber and found that Subset-Knowers and many CP-Knowers
(termed ‘‘Nonmappers’’ by Le Corre and Carey), were
unable to produce a number word that approximately
matched the number of dots (e.g., when briefly shown nine
dots these children produced number words that were no
larger than the verbal estimates they produced when
shown five dots). This study added to the evidence that
young children (including many who understood the Car-
dinality Principle) have no approximate numerical mean-
ing for these words – not even a sense that arrays of nine
dots should map to larger number words than arrays of
five dots (see also Condry & Spelke, 2008). In contrast,
Wagner and Johnson (2011) had children gather some
number of objects (e.g., toy fish) in response to a requested
number (e.g., ‘‘can you put seven fish in the pond’’) and
found that even Subset-Knowers gave approximately the
correct number, though they were unable to give exactly
the right number (e.g., when asked to give ‘‘nine fish’’ these
children tended to give more fish than when asked to give
‘‘five fish’’). This study provided evidence that young chil-
dren do have some approximate numerical meaning for
these number words, even before fully understanding the
Cardinality Principle.

At the heart of this disagreement in the literature is the
issue of how children interface their number words with
their early approximate number representations – i.e.,
whether the interface between number words and the
ANS is established before or after children fully understand
the Cardinality Principle. Although the evidence in the
existing papers appears, on its face, incompatible, there is
a possibility that they are both correct. Specifically, while
Le Corre and Carey (2007) asked children to convert ANS
representations into number words (e.g., converting dot
arrays into number word responses), Wagner and Johnson
(2011) asked children to convert number words into ANS
representations (e.g., converting number word requests
into fish collections). The appropriate distinction, therefore,
may not be that preschool-aged children either have or do
not have an interface between their number words and
the ANS, but instead that this interface is not functionally
bidirectional for the youngest counters, and that one direc-
tion of the interface develops prior to the other.

The goal of the present work is to explore the develop-
mental origins of the mapping between ANS representa-
tions and number words. One possibility is that the
mapping between the ANS and the number words is
acquired bidirectionally – that is, children may, at the very
same time, come to translate their representations of
approximate number into number words and vice versa
(Gallistel & Gelman, 1992; Joram, Subrahmanyam, &
Gelman, 1998). For example, when briefly shown a set of
dots, children might be able to say how many dots there
are (i.e., ANS-to-Word), and when given a number word
(e.g., ‘‘six’’) they might be able to approximately reproduce
it (e.g., by tapping their finger approximately 6 times; i.e.,
Word-to-ANS). Both of these directions have been observed
in adults, and adults can rather effortlessly translate either
from ANS-to-Word or from Word-to-ANS (e.g., for informa-
tion on Word-to-ANS task, traditionally called magnitude
production tasks, see Cordes, Gelman, Gallistel, &
Whalen, 2001; Crollen et al., 2011; Krueger, 1972;
Whalen, Gallistel, & Gelman, 1999; e.g., for information
on ANS-to-Word, traditionally called magnitude
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estimation tasks see Crollen et al., 2011; Halberda, Sires, &
Feigenson, 2006; Izard & Dehaene, 2008; Krueger, 1972).

Another possibility, and one that could reconcile the
currently opposing views in the literature, is that the map-
ping between the ANS and number words is not immedi-
ately bidirectional; in other words, while children may be
capable of performing one direction of the mapping, they
may be unable to perform the other. For example, perhaps
a mapping from ANS-to-Word is distinct from, and easier
to acquire than, a mapping from Word-to-ANS. A potential
basis for this asymmetry might reside in a distinction
between the computations required to support mapping
from discrete numerical labels to continuous ANS repre-
sentations compared to the opposite direction. A computa-
tional distinction could be the source for the divergent
results in the literature. To assess the acquisition of these
mapping directions, we relied on a within-subjects design
where every child played both an ANS-to-Word game and
a Word-to-ANS game in order to determine when each of
these mapping directions becomes functional.

While an immediately bidirectional mapping between
systems is perhaps intuitively appealing, there are several
reasons to anticipate that mappings in these directions,
and hence the computations that support them, may be
distinct.

First, Dehaene and Cohen (1997) report the case of the
patient M.A.R., who, when presented with a number line
labeled with 1 and 100 on its ends, was quite successful
and accurate at placing a mark in the approximate location
that corresponded to a verbal number word given by the
experimenter. Thus, M.A.R. successfully demonstrated a
Word-to-ANS mapping by translating a number word into
an approximate magnitude that could then be mapped to a
number line. However, when the experimenter indicated a
position on this same number line, M.A.R. was greatly
impaired at telling the experimenter what number word
corresponded to that part of the line: ‘‘he often wrote
down (and simultaneously pronounced) completely inap-
propriate numerals. For instance he said 90, later self-cor-
rected as 30, for a location that actually corresponded to
about 5’’ (Dehaene & Cohen, 1997; p. 237). That is, M.A.R.
failed to demonstrate a mapping from ANS-to-Word. His
performance is consistent with our suggestion that the
mapping procedures between the two systems may be
two independent, unidirectional mappings and that we
may find that, early in development (as well as in some
cases of neurological damage), performance in one direc-
tion may be superior to the other.

Second, some recent findings with children also hint at
an asymmetry in performance depending on the direction
of mapping. Mundy and Gilmore (2009) have demonstrat-
ed that 6-year-olds perform more poorly on an ANS-to-
Word task than a Word-to-ANS task. Opfer, Thompson,
and Furlong (2010) found that, for 4-year-old children
who do not demonstrate a left-to-right bias in their count-
ing behavior, counting some number of chips (1–9) can be
quite accurate, while grabbing an appropriate number of
chips in response to a verbal label can be quite inaccurate.
And, as discussed above, Wagner and Johnson (2011)
found that Subset-Knowers demonstrate an appropriate
mapping from Word-to-ANS while Le Corre and Carey
(2007) reported evidence that children even older than
those in the Wagner and Johnson sample were unable to
demonstrate a mapping from ANS-to-Word. These findings
help motivate the question whether one or the other of
these mapping directions will be functional earlier in
development, but they fail to answer this question because
of conflicting results and the diversity of methods and ages
across these papers.

When examining the mapping between the ANS and
number words (or symbols) in adults, researchers have usu-
ally focused on one of three dependent measures: the slope
of the responses, the variability in responses, and the
response error rate (the difference between the response
and the target; see Castronovo & Göbel, 2012; Castronovo
& Seron, 2007; Cordes et al., 2001; Crollen et al., 2011; Le
Corre & Carey, 2007; Mejias, Grégoire, & Noël, 2012;
Mejias & Schiltz, 2013). Linear slopes are calculated by
regressing each observer’s response to either the number
of dots presented (in ANS-to-Word) or the verbal label pro-
vided to the observer (in Word-to-ANS), against the answer
provided by the observer. A successfully formed mapping
should show slopes that are significantly positive (i.e.,
greater than 0), indicating higher responses to higher num-
bers. Slopes not significantly different from 0 indicate that
the observer’s responses do not vary with the number of
dots presented and that they are guessing randomly. The
second variable of interest – the variability of estimates –
is often indexed through the coefficient of variance (CV), cal-
culated as the standard deviation of the responses divided
by the mean for every target value. Because ANS representa-
tions show scalar variability, a mapping between number
words and the ANS results in a constant CV value for any tar-
get value (i.e., higher estimates also show higher vari-
ability). Cordes and colleagues (2001) have demonstrated
that CV values only stay constant across target values when
participants use the mapping between the ANS and number
words, and that CV is non-constant across target values
when participants use non-ANS representations, such as
counting the number of dots. Finally, the third measure –
error rate – is useful for assessing the accuracy of mapping,
with negative values indicating greater under-estimation
and positive values indicating over-estimation (Castrono
vo & Göbel, 2012; Castronovo & Seron, 2007; Crollen et al.,
2011; Mejias et al., 2012; Mejias & Schiltz, 2013).

In the present work, we investigate how slopes, CV, and
error rates change as children acquire number words and
form mappings to the ANS. We have chosen to focus on
the mapping between the ANS and number words – rather
than, more generally, on the mapping between the ANS
and exact number representations, or between the ANS
and numeric symbols (e.g., ‘‘7’’). Given the evidence that
the number words, symbols, and exact number representa-
tions may be somewhat independent (Dehaene, Piazza,
Pinel, & Cohen, 2003; Gallistel, 2007), we felt it important
to restrict our investigation to the number words them-
selves as these have been the focus of the majority of pre-
vious work – and specifically the conflicting results from Le
Corre and Carey (2007) and Wagner and Johnson (2011).
Similarly, we focus on the mapping between the number
words and the ANS as opposed to any other numerically
relevant representations. For example, a wealth of
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evidence – from multiple labs, species, and developmental
stages – reveals a deep distinction between the ‘‘small
number range’’ (generally 1–4) and the ‘‘large number
range’’ (generally 5 and greater) in cognition and percep-
tion (Feigenson, 2005; Feigenson, Dehaene, & Spelke,
2004; Trick, Enns, & Brodeur, 1996; Trick & Pylyshyn,
1994). This research demonstrates the development of
number words between ‘‘one’’ and ‘‘four’’ indicates a map-
ping to a parallel individuation system and not to the ANS
(Carey, 2009; Le Corre & Carey, 2007). For this reason, we
focus on performance with larger numbers (i.e., above five)
when assessing the mapping between the ANS and the
number words; we rely on performance in the small num-
ber range (1–4) to assess whether children understood and
were engaged in the task.

To place the challenge of mapping between ANS repre-
sentations and exact number representations in a broader
theoretical context, we will discuss the development of the-
se mappings as one example from a broader class of similar
challenges involving mappings between continuous and
discrete quantities. ANS representations fall into the class
of ‘‘analog magnitude’’ representations, which includes
other continuous quantities such as surface area, length,
time and brightness (Cantlon, Platt, & Brannon, 2009;
Feigenson, 2007; Odic, Libertus, Feigenson, & Halberda,
2013; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004;
Walsh, 2003). In other words, although the ANS may repre-
sent something discrete (i.e., collections of objects), it does
so continuously, by representing number as distributed
Gaussian random variables that exhibit scalar variability
and obey Weber’s law. In contrast, number words are com-
positional with other natural language symbols (e.g., ‘‘John
has three dogs’’) and are represented discretely along a lin-
ear scale (e.g., Crollen et al., 2011; Hockett, 1987; Izard &
Dehaene, 2008; Landau, 2004; Senghas, Kita, & Özyürek,
2004). The formal challenges faced in translating from a
continuous representation to a discrete one (and vice versa)
are thereby at the heart of our investigation into the devel-
opment of the mapping between the ANS and number
words, and any evidence for an asymmetry in the develop-
ment of the mapping between these systems can also serve
to inform theorizing beyond the case study of children’s
representation of number (e.g., for a similar argument in
the domain of spatial language, see Landau & Jackendoff,
1993).
1 These two children did not seem to want to play the games, and
consistently gave answers that were in the teens or twenties, even when
shown one dot or asked to pat one time.
2. Experiment 1

2.1. Methods

In order to assess mappings from ANS-to-Word and
mappings from Word-to-ANS we relied on methods from
previously published studies that focus on ANS representa-
tions in isolation from counting abilities. Every child
participated in both the ANS-to-Word task and the
Word-to-ANS task in addition to a standard verbal
Counting Assessment (i.e., ‘‘What’s on this card’’).

For the ANS-to-Word task, we relied on the ‘‘Fast Cards’’
game previously published by Le Corre and Carey (2007;
see also Baroody & Gatzke, 1991; Davidson, Eng, &
Barner, 2012; Lipton & Spelke, 2005). In this method, on
each trial children are briefly shown a card that depicts
some number of dots (1–10) on each trial and children
are asked to estimate how many dots were on the card. If
children have successfully mastered a mapping from
ANS-to-Word, the numerosity of the words they produce
will increase with the number of dots on the card (i.e., a
positive slope), and the coefficient of variance will remain
constant. The accuracy of this mapping can be further
established with error rates, with lower error rates indica-
tive of more accurate mapping. Nearly identical methods –
known as magnitude estimation tasks – have been used
extensively with adults throughout the literature on num-
ber (Crollen et al., 2011; Ebersbach & Erz, 2014; Halberda
et al., 2006; Izard & Dehaene, 2008; Jevons, 1871;
Krueger, 1972; Mejias & Schiltz, 2013).

For the Word-to-ANS task, we modified another method
that has been used extensively with adults. In the ‘‘Pat the
Tiger’’ game, children were presented with a different
stuffed animal on each trial. Each animal liked to be patted
a certain number of times on the head (the experimenter
would puppeteer the animal asking the child e.g., ‘‘Hi!
Can you pat me on the head seven times really really
fast?’’). Children were encouraged to pat very fast and to
only try to get close to the right number, which, in adults,
engages the mapping from Word-to-ANS in isolation of
verbal counting (Cordes et al., 2001; Whalen et al., 1999).
If children have successfully mastered a mapping from
Word-to-ANS, the number of pats they produce will
increase with the number word requested (i.e., a positive
slope), and the coefficient of variance will remain constant.
The accuracy of the mapping can be further assessed with
error rates. Nearly identical tasks – known as magnitude
production tasks – have been used extensively with adults
throughout the literature on number (Cordes et al., 2001;
Crollen et al., 2011; Krueger, 1972).

Note that all our analyses treat the small number range
(i.e., 1–4) separately from the large number range (i.e., 6–
10) because previous work in adults and children has sug-
gested that small numbers may not be mapped to the ANS,
but to a subitizing or parallel individuation system instead
(Feigenson et al., 2004; Le Corre & Carey, 2007; Svenson &
Sjöberg, 1983; Trick & Pylyshyn, 1994). As discussed above,
we report on the data from the small number range in both
our tasks as a method-check (e.g., did children understand
the task) and as a replication of previous results, while
children’s performance in the large number range is the
focus of the present mapping questions.

2.2. Participants

62 preschool-aged children (36 girls) between the ages
of 2:7 and 4:6 (average age 3:6) were run. An additional 24
children were excluded due to either not completing the
task (11), parental interference (2), technical issues (e.g.,
sound did not record) (9), or performance higher than 3.0
standard deviations from the mean of the sample (21). All
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children were from the Baltimore general community and
were tested, individually, in the Johns Hopkins Lab for Child
Development. They received a small prize for participating.
3. Materials and procedures

Children were tested in a room at the laboratory, seated
at a small table across from the experimenter. The parent,
if present, was seated approximately 3 feet behind the
child and was instructed not to aid the child during the
task. The entire session was recorded on video. The chil-
dren always did the Counting Assessment task first, and
then, in counterbalanced order across children, the Fast
Cards and Pat the Tiger tasks second and third.
3.1. Counting Assessment task: What’s on this Card

Materials consisted of two decks of 8.50 � 110 laminated
cards with pictures of animals on them. Each card depicted
from 1 to 10 animals (e.g., a card with 1 fish, a card with 7
giraffes).

In order to assess the counting ability of each child, we
administered a version of the ‘‘What’s on this Card’’ task
that has been used throughout the number literature
(Gelman, 1993; Halberda, Taing, & Lidz, 2008; Le Corre &
Carey, 2007; Le Corre et al., 2006). Children were first pre-
sented with a card that had a single fish on it, and were
asked ‘‘What’s on this card?’’. Once they had named the
item on the card (e.g., ‘‘A fish!’’), the experimenter said
‘‘That’s right, it’s one fish’’, putting emphasis on the num-
ber word. The experimenter then continued presenting
cards from a deck depicting from 1 to 9 animals in a pseu-
dorandom order asking each time, ‘‘What’s on this card?’’
Children, on each trial, counted the animals and reported
the number of animals on the card; children had to count
on every trial and were not allowed to estimate the num-
ber of animals. Children who progressed through all 9
cards in this deck and provided a cardinal number word
on each trial were categorized as CP-Knowers and the task
ended. Children were allowed to make up to 2 miscounts
across these trials (e.g., failing to count one of the items
or double-counting one of the items), so long as they pro-
vided a cardinal number that reflected the last number in
their count as their estimate. This precaution was taken
to ensure that we did not unnecessarily penalize children
for miscounting though, in practice, miscounts were very
rare. Typically, each child completed 9–10 cards and the
counting task was only administered once.

A typical response on each trial was for the child to
count and then repeat the cardinal value at the end of their
counting (e.g., ‘‘one, two, three, four, five. Five monkeys!’’).
If the child did not provide a number word estimate or
count on a particular trial, the experimenter would ask
‘‘so what’s the number’’ and if needed would ask them to
count the animals. If the child did not repeat a cardinal val-
ue at end of their count, they were asked ‘‘Do you remem-
ber what number you counted?’’ Children were never
asked a ‘‘how many’’ question, as this has been shown to
invalidate the counting assessment (Sarnecka & Carey,
2008). If the child gave an incorrect answer (e.g., counted
to five, but then gave a different cardinal number estimate;
e.g., ‘‘one, two, three, four, five. Two monkeys!’’), the
experimenter switched to a second deck of cards that
depicted from 1 to 4 animals per card. Within this deck,
the experimenter began with a card depicting 1 animal
and, if the child answered correctly, the experimenter
would give a card with two animals, etc., continuing up
in numerosity through the 1 to 4 deck, and then shifting
to the 1 to 9 deck. If the child answered incorrectly on
any particular trial, the experimenter would give a card
with a lower numerosity. Once the experimenter had run
out of cards, either completing the 5 to 9 deck or the 1 to
4 deck, a final card showing sixteen animals was shown
to the child; children were allowed to freely count the ani-
mals and we recorded the highest number they counted to
(up to sixteen) without making errors. The ‘‘knower-level’’
for the child (i.e., the highest number word that the child
appeared to have an exact meaning for) was recorded as
the highest number the child could name correctly at least
3 out of 4 times (i.e., One-, Two-, Three-, Four-Knower or
CP-Knower). We found no evidence for knower-levels
between Four-Knowers and CP-Knowers – which would
have been detectable as correct performance on all 1 to 4
animal cards but incorrect performance at some higher
numerosities in the 1 to 9 deck (but see Wagner &
Johnson, 2011).

3.2. ANS-to-Word task: Fast Cards (FC)

Materials consisted of 14 laminated 8.50 � 110 cards
with pictures of black dots on them. The 14 cards had
either one, two, three, four, six, eight, or ten dots (2 cards
per number); 1–4 acted as the ‘‘small range’’, and 6–10
as the ‘‘large range’’ (Le Corre & Carey, 2007). The overall
area was controlled across cards such that the amount of
filled area taken up by the one-dot card was the same as
the total combined area for the ten-dot card.

This procedure was identical to that used by Le Corre
and Carey (2007). The child was told that they would see
some cards with dots on them, and that they would not
be able to count them, but they would need to give their
best guess. The experimenter would then show the child
a card containing some dots for about one second, ensuring
that the child saw them, after which the experimenter
placed the card face-down in their lap and would wait
for the child to respond. If the child did not respond, the
experimenter would show the card again for 1 s (fewer
than 5% of trials). Likewise, in cases where the experimen-
ter judged that the child adopted a routine to answering
(e.g., answered 1 for first, 2 for second, 3 for third card)
or where the guess was unrealistic (e.g., higher than one
hundred), the experimenter stressed the instructions again
to the child and re-presented the card (about 2% of trials).
There were two orders of cards presented across children.
Each number was presented twice in a pseudo-random
fixed order, yielding a total of fourteen trials.

3.3. Word-to-ANS task: Pat the Tiger (PTT)

Materials consisted of 20 different small plush toy ani-
mals (approx. 40 � 50).
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The child was told that they would see some animals
who like to be patted on the head. The experimenter would
take out a random animal from a bin of 20 distinct plush
toys and would puppeteer the animal saying: ‘‘Hi! Can
you pat me on the head X times really really fast?’’, where
X was one of the target numbers. The child was asked to
pat either one, two, three, four, six, eight, or ten times in
a pseudo-random fixed order; the 1–4 numbers acted as
the ‘‘small range’’ and the 6–10 as the ‘‘large range’’. Each
number was presented twice, yielding fourteen trials. If
the child did not pat the animal, the experimenter would
repeat the question. To prevent counting, children were
asked to pat the animal really fast without counting. If
the experimenter judged that the child either counted
the pats or was tapping without paying attention, they
would repeat the trial, stressing the ‘‘really really fast’’
when necessary (fewer than 8% of trials). Subsequent ana-
lyses, presented in the results, verified that children did
not count. Children’s responses were videotaped and coded
for the number of pats. There were two orders of pat num-
bers presented across children. These orders perfectly
matched the orders used in the ANS-to-Word task, and
were crossed with the order the child received in the
ANS-to-Word task. In this way, the ANS-to-Word task
and the Word-to-ANS task were perfectly matched in trial
order, the numbers probed and the number of trials per
number probed.
3.4. Vocabulary checklist

Parents were asked to complete the MacArthur-Bates
CDI during their visit in order to assess vocabulary size
(Fenson et al., 2007). No differences were found in the pre-
sent study as a function of vocabulary size and so we do
not focus on these data in the present paper. For example,
there was no correlation between vocabulary size and
exact number knowledge once age was controlled for
(r(59) = .19; p = .14).
4. Results

To assess the formation of the mapping, we report linear
slopes of the child’s response (i.e., the number they said in
the Fast Cards task, and the number of times they patted in
the Pat the Tiger task) versus the target number. Slopes
that are significantly higher than 0 are evidence for the
existence of a mapping (i.e., that children produce higher
numbers for higher target values). Slopes that are not sig-
nificantly different from 0 are suggestive that the child is
guessing and has no established mapping between the
ANS and number words. In order to assess the formation
of the mapping between the ANS and number words, we
focus on the large number slopes (6–10); small number
slopes (1–4) are used as a method check to verify that chil-
dren understood the task. Thus, our analyses focus on
planned t-tests comparing subjects’ 6–10 slopes to the
chance level (i.e., zero), along with ANOVAs to investigate
interactions (see also Le Corre & Carey, 2007).

To assess the variability of the mapping, we report CV
values (e.g., the standard deviation for the responses
divided by the mean). To calculate CV values with a low
number of trials, we used the PsiMLE method (www.
panamath.org/psimle; Odic, Im, Eisinger, Ly, & Halberda,
under review). One word of caution: for children with
slopes of 0 (i.e., children who have no mapping and are
guessing) it is not entirely clear what a CV value indicates
and these values should be interpreted with caution.

To assess the accuracy of the mapping, we report signed
error rates (i.e., the response minus the target value). Error
rates closer to 0 are indicative of a more accurate mapping.
Decades of work has shown that adults and older children
performing ANS-to-Word tasks produce negative error rates
(i.e., under-estimation) and Word-to-ANS tasks produce
positive error rates (i.e., over-estimation; Crollen et al.,
2011; Crollen & Seron, 2012; Ebersbach & Erz, 2014;
Krueger, 1972; Whalen et al., 1999). Hence, although scores
closer to 0 indicate a more objectively accurate mapping,
slightly negative scores in the ANS-to-Word task and slight-
ly positive scores in the Word-to-ANS task are more consis-
tent with adult-like performance. Also note that, like with
CV, when a linear slope is near zero (i.e., no mapping), an
error rate may not reflect mapping performance and must
be interpreted with caution (e.g., normally distributed ran-
dom guesses can result in an observed error rate of 0).

Task order had no effect on performance, as estimated
by a 2 (Task) � 2 (Order) Repeated Measures ANOVA on
the average numerical guess of each child during the
ANS-to-Word (FC) and Word-to-ANS (PTT) tasks. There
was no main effect or interaction with Order, and all future
analyses excluded Order. As discussed in more detail
below, there was a main effect of Task, with the average
pats for Word-to-ANS (M = 5.37; SE = 0.21) being higher
than the average guess for ANS-to-Word (M = 4.04;
SE = 0.12; F(1,62) = 56.61; p < .01).

As in Le Corre and Carey (2007), we first investigated
whether children’s performance differed by Knower-Level.
We used the What’s On This Card performance to classify
children into groups of One-Knowers (N = 11), Two-Know-
ers (N = 7), Three-Knowers (N = 8), and CP-Knowers
(N = 36). To increase sample size, and thereby statistical
power, we next determined whether children from the var-
ious Knower-Levels (i.e., One-Knower, Two-Knower, etc.)
could be collapsed into larger groups based on similar per-
formance; Le Corre and Carey (2007) used a similar
approach. These group analyses revealed that all groups dif-
fered, with the exception of the Two- and Three-Knowers.
That is, a 2 (Knower-Level: Two-Knower, Three-Know-
er) � 7 (Number Probed: 1, 2, 3, 4, 6, 8, 10) Mixed Measures
ANOVA on children’s numerical responses in both the Fast
Cards and Pat the Tiger tasks did not reveal any effects of
Knower-Level nor interactions involving Knower-Level for
Two- and Three-Knowers. All other groups were significant-
ly different. For this reason we collapsed Two- and Three-
Knowers into a single larger group for the remaining
analyses.

4.1. Formation of the ANS-to-Word and Word-to-ANS
Mapping (Slopes)

Data from both the ANS-to-Word task and the Word-to-
ANS task are shown in Figs. 1 and 2. A 3 (Knower-Level:
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Fig. 1. Performance on the ANS-to-Word (Fast Cards) and Word-to-ANS (Pat the Tiger) task by counting ability group. Each point is the average guess for
that group, and the lines are the best-fitted linear slopes. Error bars are SEM.

Fig. 2. The best-fit slopes and error rates for each Knower Level for the 6–10 range on each task. Error bars are SEM, and stars indicate significant difference
between the two tasks at p < .05.
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One-Knowers, Two/Three-Knowers, CP-Knowers) � Task
(Fast Cards, Pat the Tiger) ANOVA over the 6–10 slopes
revealed a main effect of Task (F(1,59) = 5.89; p = .02), a
marginal effect of Knower-Level (F(2,59) = 2.95; p = .06)
and no significant interaction (F(2,59) = 1.67; p = .20).
Hence, the children in our sample showed significantly
higher slopes in the Pat the Tiger task, suggesting an earlier
development of the Word-to-ANS mapping. To further
evaluate this possibility, we carried out a series of planned
contrasts to investigate, for each Knower Level, whether
their 1–4 and 6–10 slopes were significantly different from
zero in each task.

In the ANS-to-Word (FC) task, One-Knowers failed to
show significantly positive slopes in both the 1–4 range
(M = 0.31; SE = 0.23; t(10) = �0.81; p = .22; see Fig. 1) and
the 6–10 range (M = �0.05; SE = 0.06; t(10) > �1; p = .48),
suggesting no ANS-to-Word mapping. In the Word-to-
ANS (PTT) task, One-Knowers had significantly positive
slopes in the 1–4 range (M = 0.45; SE = 0.15; t(10) = 2.62;
p < .05) but not in the 6–10 range (M = �0.19; SE = 0.19;
t(10) > �1; p = .34), suggesting no Word-to-ANS mapping
in the 6–10 range, either. Together, these results suggest
that by the time children are One-Knowers, they have
not attained any mapping between number words and
the ANS (Fig. 2).

In the ANS-to-Word (FC) task, the combined sample of
Two- and Three-Knowers showed positive slopes in the
1–4 range (M = 0.59; SE = 0.12; t(14) = 4.84; p < .001;
Fig. 1), but not in the 6–10 range (M = 0.05; SE = 0.14;
t(14) < 1; p = .73; Figs. 1 and 2), suggesting no ANS-to-
Word mapping. Importantly, in the Word-to-ANS (PTT)
task Two- and Three-Knowers showed positive slopes in
both the 1–4 range (M = 1.20; SE = 0.20; t(14) = 5.76;
p < .001; Fig. 1) and the 6–10 range (M = 0.42; SE = 0.19;
t(14) = 1.87; p < .05; Figs. 1 and 2). The difference between
the two tasks was significant (t(14) = 2.67; p < .05; Fig. 2).
This is consistent with Two- and Three-Knowers having a
successful mapping from Word-to-ANS, but not from
ANS-to-Word (Fig. 2).

Finally, in the ANS-to-Word (FC) task the CP-Knowers
showed significantly positive slopes in the 1–4 range
(M = 1.02; SE = 0.10; t(35) = 10.55; p < .001; Fig. 1) but not
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Davidson et al. (2012). We note that our results remain qualitatively
unchanged when any criterion in the range of 0.3–0.5 is used.
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in the 6–10 range (M = 0.21; SE = 0.13; t(35) = 1.66; p = .11;
Figs. 1 and 2). This suggests that CP-Knowers, as a group,
much like the Two- and Three-Knowers, have not formed
the ANS-to-Word mapping. In contrast, in the Word-to-
ANS (PTT) task CP-Knowers showed significantly positive
slopes in the 1–4 range (M = 1.36; SE = 0.15; t(36) = 8.71;
p < .001; Fig. 1) and in the 6–10 range (M = 0.52;
SE = 0.13; t(36) = 3.91; p < 0.001; Figs. 1 and 2). The differ-
ence between the two task was significant (t(14) = 4.55;
p < .01; Fig. 2). As in the case of Two- and Three-Knowers,
this suggests that children formed the Word-to-ANS map-
ping prior to the ANS-to-Word mapping (Fig. 2).

4.2. Variability of the ANS-to-Word and Word-to-ANS
mapping (CV)

To assess the variability of each mapping, we used the
PsiMLE method to calculate coefficients of variance. This
freely available method (www.panamath.org/psimle) uses
maximum-likelihood estimation to calculate a global CV
by pooling evidence across all available trials and target
numbers, maximizing power and reliability (Odic et al.,
under review).

In the FC task, the average CV for One-Knowers was
0.25 (SE = 0.07), for Two/Three-Knowers was 0.19
(SE = 0.04) and for CP-Knowers was 0.26 (SE = 0.02). In
the PTT task, One-Knowers had an average CV of 0.25
(SE = 0.06), Two/Three-Knowers of 0.21 (SE = 0.03) and
CP-Knowers of 0.22 (SE = 0.02). A 3 (Knower-Level: One-
Knowers, Two/Three-Knowers, CP-Knowers) � Task (Fast
Cards, Pat the Tiger) ANOVA over the 6–10 CV values
revealed no main effect of Knower-Level (F(2,59) = 1.15;
p = .32), nor Task (F(1,59) < 1; p = .51), nor an interaction
(F(2,59) < 1; p = .72). Hence, there does not appear to be
observable development of CV values as children are
becoming more experienced counters within the range
available in our sample.

4.3. Accuracy of the ANS-to-Word and Word-to-ANS Mapping
(Error Rates)

The average error rates for both the FC and PTT tasks are
shown in Fig. 2. A 3 (Knower-Level: One-Knowers, Two/
Three-Knowers, CP-Knowers) � Task (Fast Cards, Pat the
Tiger) ANOVA over the 6–10 error rates revealed a main
effect of Task (F(1,59) = 34.150; p < .001), a main effect of
Knower-Level (F(2,59) = 16.20; p < .001) and no significant
interaction (F(2,59) < 1; p = .67). As in the case of slope, we
further investigated the effect of Task through a series of
planned contrasts.

An optimal error rate is zero and, in the literature,
adults show positive error for Word-to-ANS and negative
error for ANS-to-Word. In our sample, One-Knowers
showed significantly more negative error rates in the
ANS-to-Word (FC) task (M = �4.51; SE = 0.33) than in the
Word-to-ANS (PTT) task (M = �3.0; SE = 0.67;
t(11) = 2.29; p < .05; Fig. 2). Similarly, Two/Three-Knowers
showed significantly more negative error rates in the ANS-
to-Word (FC) task (M = �3.39; SE = 0.66) than in the Word-
to-ANS (PTT) task (M = �1.25; SE = 0.66; t(14) = 2.92;
p < .01; Fig. 2). Finally, CP-Knowers also showed
significantly more negative error rates in the ANS-to-Word
(FC) task (M = �1.75; SE = 0.46) than in the Word-to-ANS
(PTT) task (M = 0.66; SE = 0.46; t(34) = 4.55; p < .01;
Fig. 2). Interestingly, the pattern of error rates in CP-Know-
ers is relatively close to the pattern in adults and older chil-
dren of slight under-estimation in ANS-to-Word tasks and
slight over-estimation in the Word-to-ANS tasks (Crollen
et al., 2011; Ebersbach & Erz, 2014). These differences are
further evidence for the asymmetry we found in the forma-
tion of the interface (i.e., slopes): children are more accu-
rate in the Word-to-ANS compared to the ANS-to-Word
task. As we discuss in the General Discussion, these results
also point to a developmental trajectory whereby children
first establish a mapping between number words and the
ANS (evidenced in slopes), and then slowly refine the map-
ping accuracy over time to resemble adult responses (evi-
denced in error rates).

4.4. Two Populations of CP-Knowers

Previous work by Le Corre and Carey (2007) revealed
that the CP-Knowers group may be comprised of two dis-
tinct populations: ‘‘CP-Mappers’’, who have a mapping
between the ANS and number words (i.e., a positive 6–10
slope on the ANS-to-Word task), and ‘‘CP-Nonmappers’’,
who do not have a mapping between the ANS and number
words (i.e., a non-positive 6–10 slope on the ANS-to-Word
task). We investigated whether the same might be true of
our sample of CP-Knowers.

We first examined whether – as in Le Corre and Carey
(2007) – our CP-Knowers comprised two groups in the Fast
Cards task (i.e., FC-Mappers and FC-Nonmappers). Consis-
tent with the prediction of two separate groups, a Kol-
mogorov–Smirnov test showed that the 6–10 slopes of
our sample of CP-Knowers in the ANS-to-Word task violat-
ed normality (KS(38) = 0.154; p < .05). In line with previous
work, we set a criterion of a slope P0.3 for separating FC-
Mappers from FC-Nonmappers.2 This resulted in two
groups: FC-Mappers (N = 14) and FC-Nonmappers (N = 24).
This split data is shown in Figs. 3 and 4.

In the ANS-to-Word task (FC), both FC-Mappers and FC-
Nonmappers had significantly positive slopes for the 1–4
range (M = 1.02; SE = 0.07; FC-Mappers: t(13) = 15.375;
p < 0.001; FC-Nonmappers: M = 0.99; SE = 0.14;
t(23) = 6.87; p < 0.001; Fig. 3). Because our division was
based on the 6–10 slopes, the FC-Mappers showed, as
expected, positive 6–10 slopes (M = 0.92; SE = 0.08), and
FC-Nonmappers did not (M = �0.21; SE = 0.11; Figs. 3 and
4). In direct contrast to this, both groups of children
showed significantly positive slopes in the Word-to-ANS
(PTT) task (FC-Nonmappers: M = 0.38, SE = 0.12,
t(21) = 3.12, p < .01; FC-Mappers: 0.74, SE = 0.28,
t(13) = 2.60, p < .05, Figs. 3 and 4). Indeed – FC-Nonmap-
pers – who fail to show positive slopes in the ANS-to-Word
(FC) task, showed significantly higher, non-zero slopes in
the Word-to-ANS (PTT) task (t(14) = �2.11; p < .03). This
powerfully suggests that, even among children who have
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Fig. 3. Performance on the ANS-to-Word (FC) and Word-to-ANS (PTT) tasks split into the two populations of CP-Knowers: FC-Mappers and FC-Nonmappers.
Each point is the average guess for that group, and the lines are the best-fitted linear slopes. Error bars are SEM.

Fig. 4. The best-fit slopes and error rates for the FC-Mappers and FC-Nonmappers (the split CP-Knower group) the 6–10 range on each task. Error bars are
SEM, and stars indicate significant difference between the two tasks at p < .05.
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all learned how to count, there is an asymmetry in the
mapping whereby children demonstrate a superior, earlier
mapping from Word-to-ANS than from ANS-to-Word.

Next, we investigated whether the CP-Knowers could
be divided into two groups based on their Word-to-ANS
(PTT) 6–10 slopes. In contrast to the pattern of results in
the ANS-to-Word (FC) task, the Kolmogorov–Smirnov test
for the Word-to-ANS (PTT) task revealed that the 6–10
slopes of the CP-Knower sample did not deviate from a nor-
mal distribution (KS(36) = 0.12; p = .20). This suggests that
the CP-Knowers comprise a single population in the ANS-
to-Word (PTT) task – i.e., PTT-Mappers. Hence, while we
found evidence for FC-Mappers and FC-Nonmappers, we
found no evidence for PTT-Mappers and PTT-Nonmappers.

We also examined the development of error rates for
FC-Mappers and FC-Nonmappers. As shown in Fig. 4, FC-
Nonmappers showed significantly more negative error
rates in the ANS-to-Word (FC) task (M = �2.22; SE = 0.52)
than in the Word-to-ANS (PTT) task (M = �0.01;
SE = 0.57; t(13) = 3.14; p < .01). Similarly, FC-Mappers
showed more negative error rates in the ANS-to-Word
(FC) task (M = �1.03; SE = 0.36) than in the Word-to-ANS
(PTT) task (M = 1.71, SE = 0.69; t(21) = 3.23; p < .01). This
replicates the pattern observed with the combined CP-
Knower sample and suggests development toward the
adult-like error pattern (i.e., under-estimation in ANS-to-
Word and over-estimation in Word-to-ANS).

One error rate data point is worth discussing further –
on the face of it, the FC-Nonmappers had a more accurate
mapping in the Word-to-ANS task (error rate of 0.01) than
the FC-Mappers (error rate of 1.71). Though at first coun-
ter-intuitive, it is important to keep in mind that adults
performing Word-to-ANS tasks strongly over-estimate
and show positive error scores similar to values we
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observe here (e.g., Crollen et al., 2011; Ebersbach & Erz,
2014; Whalen et al., 1999). Hence, our results point to a
secondary developmental process that occurs after the
interface between number words and the ANS is first
formed: children continue to refine their mapping toward
adult-like values, and already begin showing signatures
of over-estimation by their mid-fours. Hence, while FC-
Nonmappers are objectively more accurate on the Word-
to-ANS task than the FC-Mappers, it is the FC-Mappers
who appear further developed in their error rates when
compared to typical adult performance.

4.5. Alternative strategies analyses

To ensure that the good performance in the Word-to-
ANS (PTT) task derives from a functioning Word-to-ANS
mapping, it is important to establish that children were
not verbally counting during the task. At a first pass, chil-
dren in the PTT task appeared to enjoy the challenge of try-
ing to pat fast and typically patted at a very fast rate. Overt
verbal counting was explicitly discouraged and trials on
which it occurred were repeated or dropped from analysis
(approximately 1% of trials). However, it would be nice to
provide further evidence from children’s own performance
to suggest that they were not counting, even covertly ‘‘un-
der their breath’’, while they patted. Below, we present
three separate analyses that suggest that children in
Word-to-ANS (PTT) task did not count, covertly or
otherwise.

When adults count items in the large number range
(i.e., more than 4 items), they do so at a rate of 250–
300 ms/item (Landauer, 1962; Trick & Pylyshyn, 1994). In
6- and 7-year-old children, these large number counting
rates are substantially slower, with rates around 550–
1000 ms/item (Svenson & Sjöberg, 1978; Trick et al.,
1996). Hence, one indicator of counting would be chil-
dren’s patting speeds, as rates faster than 550 ms/item
would likely be too quick for children to covertly or overtly
count. We coded patting rates from the session videos for
each child by taking the total time they took to pat and
dividing it by the number of times they patted. Time start-
ed at the moment they first touched the plush toy and
stopped at the moment they took away their hand from
the toy on their final pat. For each child, we averaged the
patting rate for numbers 6, 8, and 10, as our interest was
only in the large number range. A 4 (Knower-Level: One-
Knower, Two/Three-Knower, FC-Mapper, FC-Nonmapper)
ANOVA on average patting rate found no effect of
Knower-Level (F(1,56) < 1), with One-Knowers having an
average patting rate of 383 ms (SE = 28 ms), Two/
Three-Knowers with an average of 396 ms (SE = 23 ms),
FC-Nonmappers with 416 ms (SE = 24 ms) and FC-
Nonmappers with 384 ms (SE = 18 ms). These patting rates
are faster than even the most optimistic estimate for
6-year-old children’s counting speeds, and suggest that
children in our sample were likely not counting.

In adults, counting shows two other behavioral signa-
tures. A seminal study by Cordes and colleagues (2001)
used a Word-to-ANS task and asked adult observers to
tap a button a given number times while either overtly
or covertly counting or while being prevented from
counting by verbal interference (repeating the word
‘‘the’’). Their results showed two behavioral signatures that
differentiate counting from non-counting responses during
Word-to-ANS tasks. First, Cordes et al. (2001) found that
tapping slowed down with higher numbers as a function
of number whenever adults engaged in either overt or cov-
ert counting (see also Whalen et al., 1999 and Landauer,
1962). On the other hand, tapping speed stayed constant
for trials where counting was prevented via verbal interfer-
ence. Second, Cordes et al. (2001; see also Le Corre & Carey,
2007 and Davidson et al., 2012) found that the CV values
decrease as the square root of the number presented when
adults engaged in covert or overt counting, while CV stayed
constant when counting was prevented.

In order to demonstrate that children in the Word-to-
ANS task did not count, we checked for both of the count-
ing signatures reported by Cordes and colleagues (2001).
First, we analyzed patting speeds from the video taped ses-
sions for PTT-Mappers via a 3 (Knower-Level: Two- and
Three-Knowers, FC-Mappers, FC-Nonmappers) � 6 (Num-
ber: 2, 3, 4, 6, 8, 10) repeated measures ANOVA and
revealed a main effect of Number (F(5,230) = 3.462;
p < .01) toward an increase of patting speed with larger
numbers (i.e., faster tapping for 10 than 6) and no effect
of Knower-Level (F(1,46) < 1; p = .85) nor an interaction
(F(10,230) = 1.51; p = .14) with Knower-Level. This is the
opposite direction of that predicted for counting and is
robust evidence that children did not engage in counting,
covert or otherwise, when patting during the Word-to-
ANS (PTT) task.

Lastly, we examined CV values. Unfortunately, the
PsiMLE method maximizes reliability by collapsing across
target values; this prevents us from examining the slope
of CV values across different numbers. Hence, instead, we
calculated, for each number bin (i.e., 6, 8 and 10) the stan-
dard deviation and divided it by the mean. This method has
a high correlation with the PsiMLE values (r = .65) and was
previously used by Le Corre and Carey (2007). A 3 (Know-
er-Level: Two- and Three-Knowers, FC-Mappers, FC-Non-
mappers) � 3 (Number Requested: 6, 8, 10) ANOVA
performed on the CV values revealed no effect of Number
Requested (F(2,94) = 1.655; p > 0.19) nor an effect of
Knower-Level (F(4,94) < 1), nor any interactions, suggest-
ing constant CVs.

Together, children’s patting speed, patting rate as a
function of target number, and CVs replicate the non-
counting patterns of Cordes et al. (2001), and suggest that
children in our PTT task did not count.
5. Discussion

In the first experiment, we found that children formed a
successful mapping from Word-to-ANS (Pat the Tiger task)
significantly before demonstrating a mapping from ANS-
to-Word (Fast Cards task). More specifically, while we
replicated the findings of Le Corre and Carey (2007), find-
ing that many CP-Knowers do not have a mapping between
the ANS and exact number words, these same children
showed an existing mapping from exact number words
to the ANS, as evidenced by significantly positive slopes
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in the large number range in the PTT task. These results
suggest that the mapping between the ANS and number
words is not immediately bidirectional, and that children
acquire a mapping from Word-to-ANS developmentally
prior to a mapping from ANS-to-Word. These results were
replicated in the accuracy of the mapping: error rates were
significantly lower in the Word-to-ANS task compared to
the ANS-to-Word task for both Two/Three-Knowers and
CP-Knowers. Finally, we found that error rates continued
developing after the interface is formed and began
approaching adult-like values (i.e., under-estimation in
ANS-to-Word and over-estimation in Word-to-ANS)
among our oldest kids. Finally, we found no development
of CV values in either task.

Although we performed analyses to verify that children
in the Word-to-ANS task did not count, additional method-
ological concerns include differences between the Fast
Cards and Pat the Tiger tasks. Besides the mapping direc-
tion, our Word-to-ANS (PTT) task in Experiment 1 also
involves serial event processing (i.e., patting with the
hand) while our ANS-to-Word (FC) task involves parallel
object processing (i.e., viewing dots on the page). These dif-
ferences might have played some role in determining why
one task was easier than the other. Because our focus in
Experiment 1 was on tasks that were previously estab-
lished in the literature, we cannot currently adjudicate
between the direction of mapping or task demands being
the source of the differences we observed in children’s
performance.

In Experiment 2, we extended our approach by creating
two tasks that differed only in the mapping direction
required. This was accomplished by using the Pat the Tiger
(PTT) task as our Word-to-ANS task – where the child was
told a number and had to pat – and by creating the ‘‘Fast
Pats’’ (FP) task – where the child watched the experimenter
pat the animal and had to verbally estimate the number of
pats. In doing so, we emulated every aspect of children’s
own patting performance (e.g., the experimenter patted
the animal at the speed and rate that children showed in
Experiment 1). Similar methods have appeared in the lit-
erature (Spaepen, Coppola, Spelke, Carey, & Goldin-
Meadow, 2011). In this way, the only difference between
the two tasks was whether the child guessed the number
of pats, or was told the number of times to pat the animal.
6. Experiment 2

6.1. Participants

For efficiency, we restricted our sample to only CP-
Knowers – because Experiment 1 demonstrated that the
asymmetry between ANS-to-Word and Word-to-ANS is
observed in the within the sample of CP-Knowers. Twen-
ty-three children (18 girls) between the ages of 3:5 and
4:6 (average age 4:1) were run. An additional 2 were
excluded for not being CP-Knowers (one was a Two-Know-
er and one a Three-Knower). All children were from the
Baltimore general community and were tested, individual-
ly, in the Johns Hopkins Lab for Child Development. They
received a small prize for participating.
6.2. Methods and procedure

Our Counting Assessment (What’s on this Card) and
Word-to-ANS (Pat the Tiger) tasks were identical to that
of Experiment 1, except that the numbers probed in the
Pat the Tiger task were changed to two, three, four, six,
eight, ten, and twelve. This change was made possible by
testing older children who knew higher number words,
and allowed us additional trials to estimate the linear
slopes in the large number range. As in Experiment 1, all
children first received the Counting Assessment, followed
by the Word-to-ANS and ANS-to-Word tasks in counter-
balanced order.
6.3. ANS-to-Word task: Fast Pats (FP)

This task was nearly identical in structure to the Word-
to-ANS task (PTT), but with the reversed direction of map-
ping. Children were shown the same plush toy animals
used in the PTT task and the experimenter explained that
each animal would whisper to the experimenter how many
times it wanted to be patted. On each trial, the experimen-
ter took a different plush animal, held it to their ear to
‘‘hear’’ the whisper, and then patted the animal on the head
the target number of times while the child watched. The
child was asked to estimate the number of times the experi-
menter patted the animal on the head. Children were given
neutral positive feedback after every trial.

Trial orders, animals, and target numbers of pats were
identical in the Word-to-ANS (PTT) and ANS-to-Word
(FP) tasks: e.g., either two, three, four, six, eight, ten, or
twelve pats, with each number tested twice. Because
Experiment 1 revealed that children’s patting speed in
the PTT task was approximately 3 pats per second, experi-
menters were trained to pat the animals in the FP task at a
rate of about 3 pats per second. This is a rate that is too fast
for children to precisely count (Svenson & Sjöberg, 1978;
Trick et al., 1996), but easily within the range for support-
ing ANS estimations of serial events (Droit-Volet, Clément,
& Fayol, 2008). Importantly, we did not provide arrhythmic
or time anti-correlated patting trials, because the goal of
the Fast Pats task was for the experimenter to pat in a
way that was nearly identical to children’s own style of
patting in Experiment 1. Additionally, the availability of
time-based cues should, if used, make the task easier for
children, working directly against our hypothesis. Subse-
quent video coding checked that the experimenters patted
each animal the target number of times and at the proper
rate, and any trials in which they did not were removed
from analyses (less than 0.5% of trials).
7. Results

As in Experiment 1, we classified children into Knower-
Level categories based on the WOC task. Because we
focused on CP-Knowers, our sample was aimed at older
children. Out of 25 children, 23 were classified as CP-
Knowers; the other two children were excluded from fur-
ther analyses. As in Experiment 1, the relevant measures
were slope, CV, and error rate for the 6–12 range.
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To determine whether task order affected results, we
took the average numerical guess of each child during
the ANS-to-Word (Fast Pats) task and the average number
of pats produced in the Word-to-ANS (Pat the Tiger) task
and computed a 2 (Task) � 2 (Order) Repeated Measures
ANOVA. As in the first experiment, there was a main effect
of Task, with the average pats for Word-to-ANS (M = 9.11;
SE = 1.02) being higher than the average guess for ANS-to-
Word (M = 5.60; SE = 0.50; F(1,21) = 9.89; p < .001). This is
consistent with the adult state where ANS-to-Word tasks
give rise to under-estimation while Word-to-ANS tasks
give rise to under-estimation (Cordes et al., 2001; Crollen
et al., 2011; Ebersbach & Erz, 2014). There was no main
effect or interaction with Order. Therefore, all future ana-
lyses excluded Order.
Fig. 5. Performance on the ANS-to-Word (Fast Pats) and Word-to-ANS
(Pat the Tiger) for the CP-Knowers group. Each point is the average guess
for that group, and the lines are the best-fitted linear slopes. Error bars are
SEM.

Fig. 6. The best-fit slopes and error rate for the CP-Knowers in the 6–10 range on
0 at p < .05.
7.1. Formation of the ANS-to-Word and Word-to-ANS
Mapping (Slopes)

We determined the slope of the best-fit line for the tar-
get value versus the number given by the child for both the
small number range (2–4) and the large number range (6–
12). The average slopes for both the ANS-to-Word and
Word-to-ANS tasks are shown in Figs. 5 and 6.

We found that CP-Knowers showed significantly posi-
tive 2–4 slopes in both the ANS-to-Word task (M = 0.52;
SE = 0.18; t(23) = 2.88; p < .05) and in the Word-to-ANS
task (M = 1.77; SE = 0.29; t(23) = 3.98; p < .001), suggesting
that the children understood both the tasks.

If the Word-to-ANS mapping forms prior to the ANS-to-
Word mapping, we should find significantly higher slopes
in the Word-to-ANS (PTT) task compared to the ANS-to-
Word (FP) task. Consistent with this prediction, a 2-way
repeated-measures ANOVA (Task: PTT, FP) over the 6–12
slopes showed a main effect of Task (F(1,22) = 10.15;
p < .01), with the Word-to-ANS (PTT) slopes (M = 0.96;
SE = 0.18) higher than the ANS-to-Word (FT) slopes
(M = 0.37; SE = 0.09; Figs. 5 and 6).
7.2. Variability of the ANS-to-Word and Word-to-ANS
Mapping (CV)

The average CV value in the ANS-to-Word (FP) task
(M = 0.28; SE = .02) was comparable to the Word-to-ANS
task (M = 0.27; SE = 0.04). Thus, in replication of Experi-
ment 1, there does not appear to be a significant amount
of development or difference in CV values between the
two mapping directions.
7.3. Accuracy of the ANS-to-Word and Word-to-ANS Mapping
(Error Rates)

The average error rates are shown in Fig. 6. The average
error rate for the CP-Knowers, as a single group, was
strongly negative in the ANS-to-Word task (M = �2.22;
SE = 0.56) and strongly positive in the Word-to-ANS task
(M = 3.02; SE = 1.42), consistent with performance in
Experiment 1 (and with typical adult performance). These
error rates were significantly different from each other
each task. Error bars are SEM, and stars indicate significant difference from
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(t(23) = 3.46; p < .05), thereby further replicating the
results of Experiment 1. The higher rate of over- and
under-estimation compared to Experiment 1 is likely due
to both testing values up to 12 (where over- and under-es-
timation was highest) and from testing older children.

7.4. Two Populations of CP-Knowers

As in Experiment 1, we replicated previous approaches
(Davidson et al., 2012; Le Corre & Carey, 2007) and divided
the group of CP-Knowers into two groups based on their
ANS-to-Word (i.e., Fast Pats) performance: children with
a 6–12 slope lower than 0.3 were classified as FP-Nonmap-
pers (N = 10; Average Age = 4;1), and children with 6–12
slopes higher than 0.3 were classified as FP-Mappers
(N = 13; Average Age = 4;1). Results remained qualitatively
unchanged if the slope criterion was raised to 0.5.
Fig. 7. Performance on the ANS-to-Word (FT) and Word-to-ANS (PTT) tasks split
Each point is the average guess for that group, and the lines are the best-fitted

Fig. 8. The best-fit slopes and error rates for the FT-Mappers and FT-Nonmapper
SEM, and stars indicate significant difference between the two tasks at p < .05.
FP-Mappers had positive slopes in the 2–4 range on the
ANS-to-Word task (Mean = 0.72, SD = 1.02, t(12) = 2.54,
p < .05) and the Word-to-ANS task (Mean = 1.95,
SD = 1.63, t(12) = 4.23, p < .001; Fig. 7). FP-Nonmappers
had a significantly positive 2–4 slope on the Word-to-
ANS task (Mean = 1.53, SD = 1.06, t(9) = 4.07, p < .001) and
a marginally positive 2–4 slope in the ANS-to-Word task
(Mean = 0.35, SD = 0.47, t(9) = 2.12, p = .053, Fig. 7). This
marginal effect was driven by one child with a strongly
negative 1–4 slope (�0.65) and removing this child did
not alter any of the subsequent results, and so they were
retained in the analysis to maximize power.

As expected by our division criteria (and shown in
Figs. 7 and 8), the average FP-Mapper large number slope
for the ANS-to-Word (FP) task was higher than 0
(Mean = 0.66; SD = 0.31), while it was not higher than 0
for the FP-Nonmappers (Mean = �0.01; SD = 0.23; Figs. 7
into the two populations of CP-Knowers: FT-Mappers and FT-Nonmappers.
linear slopes. Error bars are SEM.

s (the split CP-Knower group) the 6–10 range on each task. Error bars are



D. Odic et al. / Cognition 138 (2015) 102–121 115
and 8). Additionally, in replication of Experiment 1, we
found that both groups had significantly positive large
number slopes in the Word-to-ANS (PTT) task, with FP-
Mappers having an average slope of 1.16 (Figs. 7 and 8;
SD = 0.91; t(12) = 4.49; p < .001), and FP-Nonmappers of
0.72 (SD = 0.78; t(9) = 2.78; p < .02). This means that both
FP-Mappers and FP-Nonmappers successfully demonstrat-
ed a mapping from Word-to-ANS in the PTT task (i.e., both
groups were PTT-Mappers). Furthermore, we found no sig-
nificant difference between the PTT task large number
slopes for FP-Mappers versus FP-Nonmappers (Fig. 8;
t(9) = 1.32; p = .22). These results replicate the results of
Experiment 1, while controlling for task demands, and fur-
ther support to the claim that a mapping from Word-to-
ANS emerges developmentally prior to the ANS-to-Word
mapping.

When we consider error rates, a similar story emerges.
FP-Mappers, just like the FC-Mappers in Experiment 1,
under-estimated in the ANS-to-Word task (M = �1.91;
SE = 0.66) and over-estimated in the Word-to-ANS task
(M = 4.53; SE = 1.59; Fig. 8). Both of these results are con-
sistent with typical performance in adults. On the other
hand, FP-Nonmappers had relatively accurate error rates
in the Word-to-ANS task (M = 1.06; SE = 1.28) and under-
estimated in the ANS-to-Word task (M = �2.63; SE = 0.99;
Fig. 8). This pattern replicates Experiment 1 – while FP-
Nonmappers actually performed better by an objective cri-
terion, it is the FP-Mappers who are performing more
similarly to an adult pattern. In this way, error rates also
replicate the results of Experiment 1 and provide further
evidence that the accuracy of the mappings continue to
develop even once the initial interface between number
words and ANS representations has been established.

7.5. Alternative strategies analyses

To verify that the FP-Nonmappers in the Word-to-ANS
task did not count, we once again performed analyses on
patting rates and CVs. As a reminder, if children are count-
ing, their patting rates should be slower than about
550 ms, their patting rates should decrease (i.e., slow
down) with higher numbers requested, and their coeffi-
cients of variation (CV) should decrease with higher num-
bers (Cordes et al., 2001; Svenson & Sjöberg, 1983; Trick
et al., 1996). In our analyses, we did not find evidence for
any of these three signatures. The average patting rate
for FP-Nonmappers was far faster than the estimated
counting rate for 4-year-olds (M = 353 ms; SE = 45 ms),
and was not significantly different from that of the FP-
Mappers (M = 368 ms; SE = 29 ms; t(10) < 1). A 2 (Map-
per-Level: FP-Mapper, FP-Nonmapper) � 4 (Number
Requested: 6, 8, 10, 12) Mixed-Measure ANOVA performed
on individual children’s tapping speeds revealed no main
effect of Number Requested (F(3,63) < 1; p = .91), nor an
interaction between Mapper-Level and Number Requested
(F(3,63) = 1.01; p = .39). Finally, a 2 (Mapper-Level: FP-
Mapper, FP-Nonmapper) � 4 (Number Requested: 6, 8,
10, 12) Mixed-Measure ANOVA performed on individual
children’s CV values revealed no main effect of Number
Requested (F(3,54) < 1), nor an interaction between Map-
per-Level and Number Requested (F(3,54) < 1). These
results all suggest that children in the Word-to-ANS task
did not overtly or covertly count.
8. General discussion

In two experiments, we investigated the development
of a mapping between two systems of number representa-
tion – the ANS and number words. We tested children who
were acquiring the meanings of exact number words and
gave them both an ANS-to-Word mapping task (Fast Cards
in Experiment 1, and Fast Pats in Experiment 2) and a
Word-to-ANS mapping task (Pat the Tiger). We investigat-
ed the formation of the mapping (slopes), the variability of
the mapping (CV) and the accuracy of the mapping (error
rates). In both experiments, we found that children
attained proficiency at ANS-to-Word earlier than Word-
to-ANS (in both slopes and error rates), and that this may
account for the contradictory findings in the literature
(Le Corre & Carey, 2007; Wagner & Johnson, 2011).
Specifically, we found that both Two/Three-Knowers and
CP-Knowers showed significantly positive slopes and low-
er error rates in the Word-to-ANS task compared to the
ANS-to-Word task. Furthermore, we found that the group
of CP-Knowers who fail to show an existing mapping in
the ANS-to-Word task (i.e., FC- and FP-Nonmappers) nev-
ertheless show a functioning mapping in the Word-to-
ANS task (i.e., PTT).

Details of children’s performance suggest that children
engaged in both tasks (e.g., slopes >0 in the 1–4 range)
and that the differences we observed in the 6–10 and 6–
12 range are not simply because one task is ‘‘better’’ or
‘‘easier’’ than the other – though this, in itself, would have
been an important result to demonstrate in the literature.
Additionally, these differences are unlikely to have arisen
from task demands – our second experiment gave children
two serial patting tasks that only differed in the direction
of mapping. Finally, we found that the accuracy of the
mapping between number words and the ANS continues
to develop even after the initial interface is first formed,
as seen in error rates.

Why are children presenting with an asymmetry in the
mapping between the ANS and number words? We
explore two explanations for this result, though we caution
that additional work will be required to fully explain the
patterns observed here.

As discussed in the introduction, a commonly observed
result in adults is that participants under-estimate number
in ANS-to-Word tasks (i.e., magnitude estimation), and
over-estimate number in Word-to-ANS tasks (i.e., magni-
tude production); our error rate data replicate this result
in children as the average verbal estimation (i.e., in Fast
Cards and Fast Pats) was significantly lower than the aver-
age number of pats produced (i.e., in Pat the Tiger). Recent-
ly, Crollen and colleagues (2011) have suggested that this
difference might be driven by the ANS representations
being log-distributed, and number words being linearly-
distributed; mappings from log to linear (i.e., ANS-to-
Word) will produce under-estimation (e.g., log of 50 aligns
with linear value of 10), while mappings from linear to
log (i.e., Word-to-ANS) will produce over-estimation (e.g.,



Fig. 9. The hypothesized activation pattern of the ANS. Each activation is
continuous and normally distributed (i.e., Gaussian). Highlighted is the
activation for seeing 7 dots. Note that although we label the X-axis with
numbers for convenience, the activation of the ANS is continuous, and no
such units actually exist.
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linear value of 10 aligns with log value of 50). One possi-
bility, therefore, may be that our data do not demonstrate
an asymmetry in mapping, but rather show that FC/FP-
Nonmappers substantially under-estimate on Fast Cards
and Fast Pats tasks (hence appearing to have flat slopes),
while over-estimating on the Pat the Tiger task (hence hav-
ing positive slopes).

Two patterns in our data strongly suggest, however,
that this explanation cannot account for the difference
between FC/FP-Nonmappers and FC/FP-Mappers. Under
the log-linear explanation, the mappings are two sides of
an identical mapping function; hence, the more log-com-
pressed the ANS scale, the more under/over-estimation
there should be, and the magnitude of under-estimation
should perfectly correlate with the magnitude of over-esti-
mation. This prediction was verified by Crollen and
colleagues (2011), who found that adult observers’ error
rates on ANS-to-Word tasks strongly negatively correlate
with individual error rates on Word-to-ANS tasks: the
more over-estimation, the more under-estimation. Howev-
er, this result is not observed in our data. First, although
the Word-to-ANS slopes increase with age, so do the
ANS-to-Word slopes; this is exactly the opposite of the
prediction made by the log-linear account, because higher
over-estimation in Word-to-ANS should be coupled with
higher under-estimation in ANS-to-Word. Second, we
examined the individual slope and error rate correlations
among the FC/FP-Nonmappers: in Experiment 1, we found
a non-significant correlation in the wrong direction
(Slopes: r(13) = .25; p = .49; Error Rates: r(13) = .18;
p = .55), and in Experiment 2 we found no significant corre-
lation (Slopes: r(9) = �.06; p = .86; Error Rates: r(9) = .05;
p = .89). Together, these results strongly suggest that the
log-linear explanation cannot explain the observed
asymmetry.

Instead, our results appear most consistent with a
developmental phenomenon wherein children form a
mapping from Word-to-ANS prior to a mapping from
ANS-to-Word. Here, we explore possibilities for why such
a developmental progression may be natural given the
unique challenges posed by each of these mappings. We
begin by hypothesizing that the mapping between the
ANS and the number words may be two distinct unidirec-
tional mapping functions and not a single bidirectional
function. Subsequently, we connect the findings reported
here to adult work on ANS and number words, and to the
issue of mapping continuous representations to discrete
ones more broadly.

There may be a fundamental difference between the
procedures that support the translation from a noisy con-
tinuous representation (e.g., the ANS) into a discrete, pre-
cise representation (e.g., a number word) and the
procedures required to support the reverse. Izard and
Dehaene (2008) discuss the case of converting a con-
tinuous ANS representation into a discrete number word
(ANS-to-Word mapping; see also Gallistel & Gelman,
1992). Research on the ANS suggests that approximate
number is one of many systems represented as continuous
Gaussian representations that obey Weber’s law (Bueti &
Walsh, 2009; Cantlon et al., 2009; Odic, Libertus, et al.,
2013). Such representations can emerge either from a
linearly ordered mental number line with linearly decreas-
ing standard deviations or a logarithmically compressed
mental number line with constant standard deviation (for
discussion see Gallistel & Gelman, 1992). Here, we will rely
on figures consistent with a linearly ordered number line,
though results would be the same in spirit for a logarithmi-
cally compressed number line. Fig. 9 displays the hypothe-
sized approximate number representations of the ANS
with linearly increasing standard deviations as number
increases – thereby instantiating Weber’s law. The ANS
representation of, for example, seven dots, is active across
the entire segment of the mental number line that selec-
tively codes for seven items, and also, to a slightly lesser
degree, the segments that code for five, six, eight and nine
items (Izard & Dehaene, 2008; Nieder & Miller, 2004;
Piazza et al., 2004). The ANS representation of e.g.,
approximately seven is the entire continuous curve that is
not only active in one spot, but instead spans from roughly
4 to roughly 10. In this way, although the ANS represents
something discrete (i.e., the number of objects), it does
so through a continuous, real-numbered representation.

Because ANS representations are not associated with a
single numerical value along the mental number line, the
challenge of translating from a continuous ANS representa-
tion of e.g., approximately seven into a discrete representa-
tion of ‘‘seven’’ involves sampling – the mental
computations must somehow reduce the information of
the distributed activation into a single value. Izard and
Dehaene (2008) suggested that this might happen by
instantiating a series of ‘‘response bins’’ that map one-to-
one with the exact number words (Crollen et al., 2011;
Gallistel & Gelman, 1992; Izard & Dehaene, 2008; Joram
et al., 1998). That is, a visual display of 9 dots will activate
some corresponding Gaussian along the ANS mental num-
ber line (Fig. 10). The subject would then take one or more
discrete samples from this continuous activation and
determine in which response bin the samples fall. With
the response bin activated (either from one sample or the
average of multiple samples) the subject could then reply
with the verbal label for that response bin (Fig. 10). With
the bins properly aligned with the approximate mental
number line, the subject could successfully translate the
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continuous ANS Gaussian activation from ANS-to-Word
(see also Crollen et al., 2011).

Thus, two potential challenges arise for mapping from
ANS-to-Word: sampling and choosing among multiple
bins. Children below the FC/FP-Mapper level might have
an imprecise sampling procedure for converting the con-
tinuous ANS representation into a discrete response bin
(or they may not have developed this procedure at all)
and, as a result, they cannot perform well on the ANS-to-
Word task. Alternatively, all children might be capable of
properly sampling, but, in the face of multiple activated
bins, children may find it difficult to select only one number
bin and give up on choosing from these activated options.
Under this view (i.e., difficulty selecting among multiple
activated response bins), children’s performance on Fast
Cards and Fast Pats might also suffer if they can recognize
that there is only one correct answer to the question (‘‘How
many dots were on the card?’’) and that the many response
bins activated on any one trial means that they are unlikely
to answer correctly. Presently, our data cannot adjudicate
between the sampling and selection proposals. A more for-
mal account of these proposals might be constructed and
submitted to empirical test in future work. But, whatever
the correct account of children’s difficulty in mapping from
ANS-to-Word, this difficulty will have repercussions, in
practice, for how they use ANS representations to inform
their growing sophistication with exact number represen-
tations and number words.

We suggest that going from a number word to an
approximate ANS value (Word-to-ANS mapping) is a dif-
ferent challenge from the reverse. In this situation, the
child is given a precise number word and is asked to some-
how reproduce it (e.g., by rapidly tapping). A production
problem like this is not naturally solved by a sampling
procedure akin to that just described, since the ANS
Fig. 10. The hypothesized ANS-to-Word mapping procedure. The top panel illus
the internal representation of approximate number, along a mental number line.
and that, in turn, actives several numbers, to different degree. Each sample is illu
produced would be ‘‘ten’’.
representation must be generated via tapping before it
could be sampled and compared to the target value; this
would require sampling after each individual tap, thus
making a sampling procedure cumbersome.

In contrast to a sampling procedure, one plausible mod-
el for a Word-to-ANS mapping involves the building up of
an approximate signal as the reproduction behavior (e.g.,
patting) continues until the representation of the approxi-
mate number of pats meets some associatively learned cri-
terion (Cordes et al., 2001; Meck & Church, 1983; Fig. 11).
The requested number word may associatively map to a
region of the ANS mental number line with either greater
(e.g., Fig. 11, ‘‘two’’) or lesser precision (e.g., Fig. 11,
‘‘ten’’). Such mappings could be learned piecemeal – for
example, a child might build a sense of where ‘‘ten’’ falls
on the continuum before they have a strong sense of the
ordering between ‘‘eight’’ and ‘‘nine’’ (Condry & Spelke,
2008; Nicoladis, Pika, & Marentette, 2010; and the present
data). When asked to pat ‘‘ten times’’, the subject would
activate the corresponding goal region of the ANS number
line that is associated with the number word (Fig. 11).
With this criterion region activated, the subject would
begin patting, and the Gaussian activation representing
the currently patted number would grow as patting con-
tinues (e.g., in Fig. 11 the Gaussian activation would move
rightward as patting occurs). The current activation could
be compared to the criterion activity throughout the
patting sequence, and the subject would stop whenever
the current activation falls within – or moves past – the
goal region. This comparison of current activation to goal
activation requires the same operation that is performed
when discriminating two sets of dots using the ANS, an
ability that even rats and newborns, who lack number
words entirely, are capable of (Barth et al., 2006; Meck &
Church, 1983; Xu & Spelke, 2000).
trates the stimulus which would be briefly displayed. The second panel is
The final panel is the response grid that is used in the sampling procedure
strated by the arrows; given these samples, the most likely number word



Fig. 11. The hypothesized Word-to-ANS mapping procedure. The top panel illustrates the stimulus – a verbal request for a number. The second panel is the
internal representation of the ANS that is increasing (i.e., moving right) with more taps. The third panel represents the number word and the sections of the
ANS line that are associated with those words. Notice that the precision can vary. When the activation is aligned with the standard, the tapping stops.
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In this model, the child may gradually acquire a rough
sense of where along the ANS continuum various number
words tend to fall, and number words can capitalize on this
functional mapping between long-term memory represen-
tations for a criterion and the ANS (Fig. 11). In this way, the
challenge of mapping from Word-to-ANS is distinct from
any sampling procedure and instead may involve the asso-
ciative learning of where number words map to the ANS
number line. Overall, this model of the Word-to-ANS map-
ping does not require sampling, can be learned piecemeal
for any number word, can have mappings adjusted and
improved with increasing experience, and predicts over-
patting in Word-to-ANS tasks (e.g., through patting until
crossing a criterion). While models of a Word-to-ANS task
that involve sampling procedures are certainly possible,
we believe that such models would fail to capture the dis-
tinction between children’s failure in an ANS-to-Word task
and their success in Word-to-ANS tasks.

As a result of these differences in the mapping proce-
dures, children may require both an ANS-to-Word and a
Word-to-ANS mapping before they can demonstrate the
full interface between the ANS and the number words.
An absence of bidirectionality and the requirement of dis-
tinct procedures is consistent with our findings that one
direction (i.e., Word-to-ANS) emerges developmentally
earlier than the other. Future work will be needed to fur-
ther develop and verify such models.

Le Corre and Carey (2007) focused their discussion on a
claim that ANS representations appear to not play a role in
children’s acquisition of the exact number concepts
(because children became CP-Knowers before demonstrat-
ing an ANS-to-Word mapping). It is possible that the suc-
cessful Word-to-ANS mapping demonstrated here could
be productive in helping children to understand the exact
number concepts, but a causal mechanism remains to be
specified. The evidence from the present study suggests
that before children have become CP-Knowers, they are
able to map from a discrete number word representation
(e.g., ‘‘ten’’) to a region on the continuous ANS mental
number line. It may be possible to construct learning pro-
posals in which this association plays a role in the acquisi-
tion of the meaning of the number words and new
numerical understandings (e.g., Verguts & Fias, 2008 pro-
pose that learning number symbols may improve the pre-
cision of ANS representations). Such proposals could be a
focus of future work.

Our proposal of distinct computations that support the
ANS and number word interface is similar to at least some
explanations of the production-comprehension asymmetry
in children’s language acquisition (i.e., the fact that chil-
dren can understand many more words and grammatical
constructions than they can produce; Clark & Hecht,
1983). For instance, when shown an array of plush animals,
children asked to point to doggie (i.e., a comprehension
‘‘Word-to-Animal’’ task) will only point to plush dogs,
but when asked to name various animals (i.e., a production
‘‘Animal-to-Word’’ task), these same children may overex-
tend doggie to almost all other animals (Clark, 1983). Sev-
eral explanations of such over-extensions in language
production suggest that young children struggle when
forced to choose a single lexical entry for a complex
category, and that one strategy may be over-using a single
term for a variety of concepts (Clark & Hecht, 1983;
Thomson & Chapman, 1977). On the other hand, when
children are provided with a lexical item (e.g., point to dog-
gie), they are already given the single relevant concept (i.e.,
doggie) and must choose to point at only those items that
are a close match to that concept. This kind of explanation
is quite similar to one version of our account: an ANS-to-
Word mapping is challenging to children because they
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must select only a single word to describe an entire con-
tinuously distributed representation, and a Word-to-ANS
mapping is easier to master because children are given
the single relevant item (e.g., ‘‘ten’’) and must tap until
they reach a representation that is sufficiently similar to
this target region of ANS activation.

Regardless of the computations that support the initial
formation of the interface between number words and
the ANS, there is clear evidence for further refinement of
the mapping. In our data, we found that error rates – which
index how accurately children calibrate number words to
the ANS scale – were different between our two tasks for
both Two/Three-Knowers and CP-Knowers. Specifically, in
the Word-to-ANS task, while Two/Three-Knowers under-
estimated, the FC/FP-Nonmappers were very accurate in
their responses, while the FC/FP-Mappers significantly
over-estimated (as is typical in adults). Hence, the data
suggest that after children first acquire the Word-to-ANS
interface, they then continue to refine their mapping
toward an adult-like state (and, because adults over-esti-
mate when making this mapping, this gives rise to a stage
in which children are actually more accurate in their map-
ping than adults). Our data are also consistent with a
recent finding by Ebersbach and Erz (2014), who found
that children continue to develop the accuracy of their
calibration for a long time in both production and compre-
hension tasks. Interestingly, in their data, children eventu-
ally performed better (that is, more accurately) at the ANS-
to-Word task compared to the Word-to-ANS task. The kind
of asymmetry in the mapping that we are proposing is
entirely consistent with this finding: while the ANS-to-
Word direction may be more difficult to initially acquire,
the development of accurate calibration once the interface
is in place may actually be easier.

The present work is also related to aforementioned
work by Crollen and colleagues (2011; see also
Castronovo & Seron, 2007) on the mapping between ANS
and exact number representations in adults. The data pre-
sented here supports at least part of their hypothesis, as we
found that children in both experiments significantly over-
estimated in the Word-to-ANS task compared to the ANS-
to-Word task. Our work further explores the model of
Crollen et al. (2011) by demonstrating that the two direc-
tions of mapping do not develop at once. Additionally,
our work makes predictions for future adult work; for
example, the selection problem of choosing only one bin
should also affect adult performance, and adults may show
different amounts of internal precision (i.e., CV) in estima-
tion tasks compared to production tasks.

We close by considering number words as a case study
for the more general challenge of learning to interface dis-
crete representations (e.g., words) with continuous repre-
sentations (e.g., ANS). Across multiple literatures, there is
evidence for many other contents that rely on continuous
representations similar to the ANS; these include represen-
tations of approximate area (Brannon, Lutz, & Cordes,
2006; Odic, Libertus, et al., 2013; Odic, Pietroski, Hunter,
Lidz, & Halberda, 2013), length (Droit-Volet et al., 2008),
time (Droit-Volet et al., 2008; Meck & Church, 1983;
Walsh, 2003), speed (Möhring, Libertus, & Bertin, 2012),
and many more (Cantlon et al., 2009; Dehaene &
Brannon, 2011; Feigenson, 2007). Each of these is available
prelinguistically and humans in many cultures eventually
master an ability to map from these representations into
discrete values and vice versa (e.g., ‘‘the speed limit is
130 km/h’’, ‘‘these crayons are various shades of red’’). It
remains a difficult challenge to determine how such map-
ping functions operate. In the present study, we found that
a mapping from Word-to-ANS may be functional earlier
than a mapping from ANS-to-Word. This developmental
progression may highlight the extent to which the inter-
faces between approximate representations (e.g., ANS)
and discrete linguistic representations (e.g., number
words) may depend on an ability to use language to ‘‘point
down’’ toward regions within the prelinguistically-existing
approximate spaces rather than on an ability to abstract
away from, grow out of, or otherwise increase the precision
of pre-existing continuous representations. We suggest
that children’s success at using the number words to point
down to goal regions in the ANS (e.g., when mapping from
Word-to-ANS), and their failure to discretize continuous
ANS activations into response bins (e.g., when mapping
from ANS-to-Word), highlights the importance of mapping
from discrete to continuous representations, and the diffi-
culties of mapping from continuous to discrete.
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